831 research outputs found

    Local Component Analysis

    Get PDF
    Kernel density estimation, a.k.a. Parzen windows, is a popular density estimation method, which can be used for outlier detection or clustering. With multivariate data, its performance is heavily reliant on the metric used within the kernel. Most earlier work has focused on learning only the bandwidth of the kernel (i.e., a scalar multiplicative factor). In this paper, we propose to learn a full Euclidean metric through an expectation-minimization (EM) procedure, which can be seen as an unsupervised counterpart to neighbourhood component analysis (NCA). In order to avoid overfitting with a fully nonparametric density estimator in high dimensions, we also consider a semi-parametric Gaussian-Parzen density model, where some of the variables are modelled through a jointly Gaussian density, while others are modelled through Parzen windows. For these two models, EM leads to simple closed-form updates based on matrix inversions and eigenvalue decompositions. We show empirically that our method leads to density estimators with higher test-likelihoods than natural competing methods, and that the metrics may be used within most unsupervised learning techniques that rely on such metrics, such as spectral clustering or manifold learning methods. Finally, we present a stochastic approximation scheme which allows for the use of this method in a large-scale setting

    Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization

    Get PDF
    We consider the problem of optimizing the sum of a smooth convex function and a non-smooth convex function using proximal-gradient methods, where an error is present in the calculation of the gradient of the smooth term or in the proximity operator with respect to the non-smooth term. We show that both the basic proximal-gradient method and the accelerated proximal-gradient method achieve the same convergence rate as in the error-free case, provided that the errors decrease at appropriate rates.Using these rates, we perform as well as or better than a carefully chosen fixed error level on a set of structured sparsity problems.Comment: Neural Information Processing Systems (2011

    Minimizing Finite Sums with the Stochastic Average Gradient

    Get PDF
    We propose the stochastic average gradient (SAG) method for optimizing the sum of a finite number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method's iteration cost is independent of the number of terms in the sum. However, by incorporating a memory of previous gradient values the SAG method achieves a faster convergence rate than black-box SG methods. The convergence rate is improved from O(1/k^{1/2}) to O(1/k) in general, and when the sum is strongly-convex the convergence rate is improved from the sub-linear O(1/k) to a linear convergence rate of the form O(p^k) for p \textless{} 1. Further, in many cases the convergence rate of the new method is also faster than black-box deterministic gradient methods, in terms of the number of gradient evaluations. Numerical experiments indicate that the new algorithm often dramatically outperforms existing SG and deterministic gradient methods, and that the performance may be further improved through the use of non-uniform sampling strategies.Comment: Revision from January 2015 submission. Major changes: updated literature follow and discussion of subsequent work, additional Lemma showing the validity of one of the formulas, somewhat simplified presentation of Lyapunov bound, included code needed for checking proofs rather than the polynomials generated by the code, added error regions to the numerical experiment

    Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods

    Full text link
    Our goal is to improve variance reducing stochastic methods through better control variates. We first propose a modification of SVRG which uses the Hessian to track gradients over time, rather than to recondition, increasing the correlation of the control variates and leading to faster theoretical convergence close to the optimum. We then propose accurate and computationally efficient approximations to the Hessian, both using a diagonal and a low-rank matrix. Finally, we demonstrate the effectiveness of our method on a wide range of problems.Comment: 17 pages, 2 figures, 1 tabl
    • …
    corecore